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Abstract—In a system containing several distributed servers,
messages of random sizes generated at different locations must
be disseminated and processed in the same order by all hosts.
A ring protocol is defined, where a number of folders carrying
messages circulate in one direction without overtaking each other.
A model involving parallel queues is analysed in the steady
state and is solved approximately, allowing the computation
of performance measures. A number of example systems are
evaluated numerically and by simulations, leading to a heuristic
for choosing the optimal number of folders.

Index Terms—Server Replication, total order, logical ring,
approximate analysis, parallel queues, bulk service.

I. INTRODUCTION

Many distributed applications demand that cooperating pro-
cesses view system events and messages in identical order
[8]. Chief among these applications is replicated processing,
a widely used method for building crash tolerant services
[15]. A fundamental requirement in this context is that all
requests (e.g. file updates), regardless of their origin, should
be processed in the same order by all replicas. A client sends
a message to any one of the replicated servers, which then
disseminates it to all other servers so that updates everywhere
are performed in a mutually consistent manner. An example of
such a replicated service used in many practical applications
is Apache Zookeeper [7].

There is an extensive literature on ordering protocols (see
[2] for a survey). Most implementations, including the ordering
protocol of Zookeeper [6] and RAFT [14], take a centralised
approach. One replica is designated as the leader to whom
all others send their messages for ordering. This involves two
multicasts by the leader, which are typically implemented by
means of multiple unicasts, one for each destination. The
resulting network traffic, and the load placed on the leader,
are considerable [3].

More recently, interest has focused on high throughput and
scalable data processing (even at the expense of latency). The
major constraint in achieving this appears to be the network
capacity [18]. Consequently, alternatives to multiple unicasting
have been explored and the prominent approach is to arrange
server replicas in a ring. Each server sends messages only to
its neighbour in one direction, and receives them only from
its neighbour in the other direction. The resulting structure
is a leader-free, decentralised ring. It is argued in [S] that

the message ordering over such a ring can offer scalable
throughput which is less affected by the network capacity
constraints discussed in [18].

In this paper, we propose a ring protocol which handles
messages of random sizes and allows a server to disseminate
them in random batches. Several folders circulate continu-
ously, visiting the servers in turn without overtaking each
other. Every folder contains a set of dedicated storage blocks
of fixed size, where each server loads the messages it wishes
to pass on. The details of the protocol, and the proof that it
achieves safe and consistent total order, are described in the
next section.

We analyse the stochastic behaviour of the multi-folder
protocol and provide an approximate solution that allows us
to compute performance measures. Such an analysis does not
appear to have been attempted before. Other studies have
focused on the mechanics of message transport and delivery.
The term ‘latency’ has been used to denote the interval
between a server sending a message, and its delivery. We are
interested in the response time, i.e. the interval between the
arrival of a message into the system and its delivery. That is a
sum of queueing delay at a server, plus a latency. It turns out
that there is an interesting trade-off between queuing delays
and latency, which influences the optimal number of folders
that should be employed.

A. Related work

A ring protocol called LCR was proposed and implemented
by Guerraoui et al, [5]. It ensures total order by maintaining
vectors of logical clocks, whereby each station keeps track of
messages sent by other stations. That set-up requires fairness
control, in order to prevent a heavily loaded server from giving
priority to its own messages at the expense of those sent to
it for forwarding. This issue was recognised and addressed in
[5] by means of a rather complex algorithm.

A different ring structure called TRAINS was introduced in
Simatic et al, [16]. Its trains and wagons have similar functions
to our folders and blocks. Like the LCR protocol, TRAINS
requires a special algorithm for controlling and balancing the
flow of messages. In our case, the problem is solved by
statically fixing the block sizes allocated to each station.

The above studies deal with throughput and latency, but
are not concerned with the user experience exemplified by



the average response time. That performance measure was
evaluated approximately by Liu et al, [10], in the case of a ring
with a single folder, and messages of fixed size. The question
of optimal number of folders did not arise for that system.

A circulating folder resembles a ‘polling server’ which visits
a number of queues in sequence. While there is a large volume
of work on polling systems (see [17] for a good survey),
existing results do not apply to our model even in the case
of a single folder. The reason is that a visit time at a host
depends on the current number of non-empty blocks, i.e. not
only on the queue being visited, but also on all other queues.

Another, more distantly related work is Marandi et al, [11],
where a combination of a leader and a ring is proposed. There
is also a class of protocols where a logical ring is used for
rotating the leadership role among servers (Defago et al, [2]).

An issue that we do not consider here relates to the
possibility of server crashes. After a breakdown, the ring
structure would need to be reconfigured and new folders must
be initialised. During this recovery process, servers would
communicate with each other in the normal manner and can
use any of the algorithms proposed in [5], [14], [13] and [9].
Recovery would be possible, as long as no more than one
server crashes between successive reconfigurations. For our
study, we assume that all servers are reliable.

The model is described in section 2. Section 3 develops
the approximate solution, while section 4 presents several
examples and addresses the optimisation of the number of
folders.

II. THE MODEL

The system contains [V service hosts, numbered 1, 2, ..., N.
Host 7 has a separate FIFO queue, @);, for incoming messages.
Hosts communicate with each other by means of M “folders’,
numbered 1, 2, ..., M, carrying messages. The folders travel
in one direction only: from host 1 to host 2, ..., from host NV
to host 1. There is no overtaking, so that at each host, folder
m + 1 arrives after folder m (m < M), and folder 1 after
folder M. If more than one folders gather at a host, they are
queued and processed in order of arrival.

Each folder consists of N ‘blocks’, numbered 1, 2, ...,
N, where block ¢ is permanently dedicated to the transport
of messages sent by station ¢. All blocks have the same
integer size, B. Messages have random integer sizes on the
interval [1, B]. Hence, each block carries a random number
of messages which does not exceed B. The message size
distribution plays an important role in the subsequent analysis.

When any folder, m, comes to host ¢, messages from (); are
loaded into block i, in order of their arrival at host ¢, as long as
their total size does not exceed B. The current contents of the
folder, i.e. both the newly filled block ¢ and the blocks loaded
by the other hosts, are copied and stored locally, until they are
delivered to the application. The purpose of that local store is
to enable the handling algorithm to deliver all messages in
the same order at all hosts, regardless of their origin. In the
meantime, when folder m eventually returns to host ¢, a new
batch of messages from @); is loaded into block 4.

The passage of messages through the system is illustrated in
Figure 1, which focuses on one of the N queues. The period
between leaving the queue and departing from the system,
having been transported by a folder and eventually delivered
at all hosts, is represented in the diagram by the place marked
‘waiting’. This period is often referred to as ‘latency’ in the
literature. Note that the latency depends on how long folders
take to visit all the hosts. Those intervals will be referred to
as ‘cycles’. Moreover, we shall see that the latency depends
on the index of the origin host. However, it does not involve
queueing. The period between a message arriving into, and
departing from the system is its response time.
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Fig. 1. The passage of messages through the system

The algorithm for transporting and delivering messages is
governed by the following rules.

1) As folders circulate among the hosts, they are identified
by their index, m, and also by the round, in which they
are currently engaged. At time 0, a certain designated
host, say host 1, generates the M folders and launches
them circulating with round numbers, r, set to 1. There-
after, every time folder m visits host 1, its round number
is incremented by 1.

2) Each block carried by a folder is labeled with the round,
r, during which it was loaded. Each block stored in a
local store is labeled with a pair of integers, (m,r),
where m is the index of the folder that carried it and r
is the round number that the folder had when the block
was loaded.

3) As soon as a host is visited by folder m with round
number r + 1, all messages in blocks labeled (m,r) in
the local store are delivered. At host 1, the incrementing
of r and the resulting deliveries take place before any
other processing. All deliveries are performed in order of
block index (i.e. host of origin) and within each block,
in the order in which messages were loaded (i.e., order
of arrival at the host of origin). If folder m starts round
r + 1 while still carrying blocks labeled r, such blocks
are delivered to the application immediately.

Rule 3, together with the non-overtaking regime for folder
circulation, implies that at all hosts, blocks are delivered in
label sequence (1,7),(2,7),...,(M,r) (those are blocks loaded
during round r), followed by (1,7+1),(2,7+1),..., (M,r+1)



(blocks loaded during round 7+ 1), for all » = 1,2, .... More-
over, blocks with the same label, and messages within those
blocks, are also delivered in a fixed prescribed order. Thus
the algorithm achieves its purpose: all messages, regardless of
origin, are delivered in the same order at all hosts.

Since this system is intended to model replicated servers,
it is reasonable to assume that the stochastic behaviour of all
hosts is the same. In particular, the time taken by any host, 7,
to process a visiting folder depends on the occupancy of the
N blocks, but does not depend on i. The loading operation
into block ¢ takes an average time « if there is at least one
message to be loaded, and time 0 if (); is empty. The copying
of each of the other blocks also takes an average time « if
that block is non-empty, and time O otherwise. Thus, if K
of the blocks in the folder require processing when it visits
host 4, the average processing time, b, would be b = K«. The
maximum average processing time, b = N, is realised when
all blocks are non-empty.

Clearly, the processing time of any folder on a visit to any
host depends not only on the current state of the corresponding
queue, but also on the previous history of all queues and all
folders. This complex interdependency between the different
queueing processes and the movements of folders implies that
an exact analysis of the system is intractable. We therefore
propose an approximate solution that will nevertheless enable
us to compute reasonably accurate estimates of performance
measures.

Assume that messages requiring transmission arrive at any
host, i, according to an independent Poisson process with rate
A or, equivalently, that they arrive into the system in a Poisson
process with rate N and are then directed to any host with
probability 1/N. The sizes of incoming messages at all hosts
are discrete random variables, independent of each other and
taking value j with probability g(j), j =1,2,...,B.

A. Stability condition

Denote by v the average ‘visit interval’ of a folder at
a host. The visit interval may include waiting for other
folders currently at that host to complete their processing,
plus the processing of this folder. More precisely, if y is the
average number of other folders present, and assuming that
their processing times are i.i.d. random variables distributed
exponentially with mean b, we can write

v=(y+1)b. (1)

The circulating folders may be treated as a closed queueing
network where the NV hosts are the nodes and the M folders are
the customers. According to the Arrival Theorem (see [12]),
the number of other folders encountered at a host by a visiting
folder has the same distribution as the steady-state number at
that host, but in a network with M — 1 circulating folders.
Since those numbers have the same distribution at all hosts, we
conclude that the average number of other folders encountered

at a host by a visiting folder is y = (M — 1)/N. Hence, the
maximum average visit interval is

(N+M—-1)
N
The interval between two consecutive visits by any given
folder to the same host has already been referred to as a cycle.
The average length of a cycle reaches a maximum, 7', when
all blocks in the folder remain non-empty during the cycle.
That maximum average length is given by

=(N+M-1)a. )

v =

T=NN+M-1a. 3)

Here we have assumed that the travel times of folders
between hosts are 0. Non-zero travel times could be included
in the closed folder network, but that would not produce
significantly more accurate results because in practice travel
tmes are orders of magnitude smaller than processing times.

We need to determine the distribution of the number of
messages that may be loaded into a block of size B. Denote
by Gi(j) the probability that the total size of k messages
does not exceed j, for j = k,k + 1,..., B. The probability
that at least £ messages would fit in the block is then given

When k£ = 1, the probability that the size of a single
message does not exceed j is equal to

J
Gi(j)=> 9(s),j=12,...,B, )
with G1(B) = 1. For k > 1, the corresponding probabilities
are obtained by applying the convolution recurrences, splitting
the k& messages into two groups containing one and k£ — 1
messages respectively, and remembering that the total size of
k — 1 messages is at least k — 1:

J—k+1
> 9()Gra(—s), j=kk+1,...,B. (5

s=1

Gr(j) =

In addition to these recurrences, our assumptions imply that
Gk(j) = 0 when j < k, since the total size of k messages
cannot be less than k. In particular, Gi,(B) = 0 when k > B.

If there are more than k£ messages available for loading
when a folder arrives, then exactly k of them are loaded when
the total size of the first £ messages does not exceed B, but
the total size of the first k£ + 1 messages does. The probability
of that event, 7}, is

Tk:Gk(B)ka_i_l(B), k:].,Q,.‘.,B, (6)

The average number of messages loaded into the block
depends, in general, on the current state of the queue. It
may also depend on past history. If at the previous visit the
queue was not emptied, and the appropriate block was not
completely filled, the first message that failed to load must
have been too big to fit into whatever space remained in the
block. Consequently, the distribution of the message left at the
head of the queue may be skewed towards the larger sizes. This
phenomenon will be referred to as the historical dependency’.



As it is difficult to model, and manifests itself only when the
system is very heavily loaded, its effect will be evaluated by
simulation.

For the purposes of approximation, we shall ignore the
historical dependency and assume that when a folder finds
more than k messages present in a queue, the probability
that exactly k of them are are loaded is given by (6). Those
probabilities cease to depend on the queue size when there are
at least B messages present.

Let d be the average number of messages loaded into a
visiting folder when the queue size is at least B:

B
d= Z kry . (7
k=1

After substituting (6), this becomes

B
d=> Gp(B). (8)

k=1

Under the above assumptions, we can estimate the condition
for stability of the system. Note that when all queues are long,
the average cycle of any folder with respect to a particular host
has its maximum value, 7', given by (3). During a cycle, that
host is visited by all M folders and on each visit, an average of
d messages are removed from its queue. Hence, a long queue
would experience a downward drift, ensuring stability, if the
average number of messages that arrive during a maximum
cycle is lower than the corresponding number of departures.
The approximate stability condition can thus be written as

Md
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The same condition would apply to all queues, i.e. to the
system as a whole. In the analysis that follows, it is assumed
that the inequality (9) is satisfied.

III. APPROXIMATE SOLUTION

As indicated in Figure 1, the residence of a message in the
system consists of two consecutive phases: the first, referred
to as the ‘queueing phase’, is the sojourn in the input queue
until loaded into a folder; the second, which we shall call
‘delivery phase’, consists of the total interval during which
copies of the message remain in various waiting rooms while
that folder circulates among the hosts, until all deliveries
are completed. The queueing phase requires a congestion
analysis, while the delivery phase involves an approximation
of delivery periods. Intuitively, there is a trade-off between the
two phases. Increasing the number of folders in circulation
tends to increase the service rate in the right-hand side of (9),
which reduces queuing. At the same time, cycles would tend to
become longer, according to (3), which increases the delivery
phase. The two phases will be addressed separately.

A. Queueing phase

The idea is to treat host ¢ in isolation, with its queue
evolving in a stationary environment defined by the other
hosts. The resulting solution is then used in order to recalibrate
the environment.

The service mechanism at (); is known as ‘bulk services’.
There is a sequence of service instants, when several messages
leave the queue simultaneously. These moments correspond to
the visits of folders to station 7. The rate at which they occur,
and the number of departures that take place, are modulated
by the environment and depend on the number of messages
present.

Consider the service instants when folder 1 visits host @
and finds QQ; not empty. Denote by S the steady-state average
number of non-empty blocks, other than block ¢, during the
resulting folder 1 cycles. The constant S, which is yet to
be determined, defines the environment in which @; evolves.
The average length of a folder 1 cycle, T'(S), where block 4
and an average of S other blocks require processing at every
station, is given by an expression similar to (3) but involving
the environment S

T(S)= (14 S)(N+M—1)a. (10)

During such a cycle, host ¢ is visited by all folders. Hence,
we can reasonably estimate the average interval between
consecutive visits by a folder to host ¢ as T'(S)/M. Our ap-
proximation is based on assuming that those intervals are i.i.d.
random variables distributed exponentially. In other words,
host ¢ is modelled as an M/M/1 queue with bulk services
where, for a given environment S, the service instants occur
at rate

Y

The number of messages that depart simultaneously from the
queue at each service instant is described by the distribution
Gr(B), obtained from (5).

Let m; be the steady-state probability that there are j
messages in Q;, 7 = 0,1,.... A set of balance equations for
these probabilities can be derived as follows.

For each 5 = 0,1,..., divide the set of all possible states
into two groups: group 1, where there are 5 or fewer messages
present and group 2, where there are j + 1 or more messages
present. In the steady state, the rate of upward transitions
between them, from group 1 to group 2 (i.e. the average
number of such transitions per unit time), must be equal to
the rate of downward transitions, from group 2 to group 1.
Upward transition occur when there are j messages present
and a new message arrives. Downward transitions occur when
there are j+k messages present, for k = 1,2, ..., B, a service
instant occurs and at least £ messages depart, which happens
with probability Gy, (B). These transitions are illustrated in
Figure 2.

The resulting balance equations are

B
Ay = p(S)Y Gr(B)mjgk 5 §=0,1,... . (12)
k=1



Fig. 2. Upward and downward transitions between groups 1 and 2

It is known that, if the departure batch sizes are fixed,
the steady-state distribution of a queue with bulk services
is geometric (e.g., see [1]). In the present model the batch
sizes are random, but we still find a geometric distribution.
Specifically, we can find a solution to equations (12) of the
form

T =Cz ; j=0,1,..., (13)

where C' and z, are some positive constants. Indeed, substi-
tuting (13) into (12), we find that the equations are satisfied
as long as zg is a zero of the polynomial of degree B

B

P(2) =X —pu(8) Y Gr(B)2* . (14)
k=1

In addition, in order that we may obtain a probability distri-

bution, zo must satisfy |zo| < 1.
Note that P(0) = A > 0. When z = 1, we have

B
P(1)=XA—pu(S) > Gr(B)=A-pu(S)d<0, (15
k=1

according to (8) and the stability condition (9). Remember that
T(S) < T, since S < N — 1.

Hence, P(z) has a real zero, z, in the open interval (0, 1).
The normalized solution (13) becomes

=0 —20)2 ; 7=0,1,.... (16)

The existence of a positive normalizeable solution to the
balance equations implies that this irreducible and aperiodic
queueing process is ergodic. Therefore, the distribution (16)
is the unique solution (the fact that P(z) has no other zeros
in the interior of the unit disk can also be proved directly, by
using Rouche’s theorem).

The above distribution of the isolated queue @); depends on
the environment S via the value of zy, which depends on T'(.S).
To emphasise this fact, let us write zy as a function of S: zg =
20(5). Note that, according to (16), zo(S) is the probability
that the queue is not empty, which is also the probability that
block ¢ in any folder is not empty. Since all N queues are
statistically identical, the average number of non-empty blocks
belonging to the other N — 1 hosts is (N — 1)z(.5). Hence,
S must be the fixed point of the equation

S = (N —1)2(S) . (17)

To show that such a fixed point exists and is unique, we
make the following two observations:

1) At the two end points of the interval [0, N — 1], we have
20(0) > 0 and zo(IN — 1) < 1. This follows from the
existence of the geometric distribution.

2) The function zo(S) is concave. This can be seen by
setting z = 2¢(.5) in (14), so the left-hand side becomes
0, and differentiating with respect to .S twice. The first
derivative of z(S) is positive, i.e. it is an increasing
function of S; the second is negative.

Observation 1 implies that the functions in the left-hand
side and right-hand side of (17) intersect at least once between
S =0and S = N — 1. Observation 2 shows that they cannot
intersect more than once.

The fixed point of (17), 5, can be computed by various
algorithms. A simple approach is to start with some initial
estimate, say So = N — 1, and evaluate successive iterations

St = (N = 1)20(Sh) (18)

until two consecutive iterates are sufficiently close to each
other. These iterations are guaranteed to converge to S.

Having computed the fixed point, the average number of
messages in any queue, L, is obtained from

__=(5)
S 1-2(8)
The average sojourn time of a message in queue Q;, wg, is
also independent of ¢ and is given by Little’s result:
_Lq
U)q = T .

19)

q

(20)

B. Delivery phase

The average time spent in the delivery phase by a message
arriving at host 4, w;, will be approximated by expressing it
in terms of the average cycle time of the folder where the
message is loaded. It turns out that, despite the equal traffic
parameters at all hosts, w; depends on <.

Consider a block originating at host ¢ and loaded into folder
m in round 7. That block is stored in the local stores of hosts
i, i+ 1, ..., N, with label (m,r). When folder m reaches
host 1, the round number becomes r + 1. According to rule
3, hosts 1, 2, ..., i — 1 deliver the block, without needing to
store it, as soon as the folder reaches them. The return of the
folder to host ¢ completes a cycle during which there have
been deliveries at hosts 1, 2, ..., ¢ — 1. The repeated visits to
hosts 4, 7+ 1, ..., N form part of the next cycle and result in
delivering the locally stored copies of the (m,r) block.

The delivery period, w;, of a block loaded by host 7 into
folder m is the interval between the loading instant and the
last delivery. The latter occurs when folder m reaches host NV
again, during its round r + 1. The resulting interval includes
one full é-cycle of folder m, plus (N — ) ‘hops’ forming part
of its next cycle. A hop consists of the processing time of the
folder at one host.

To approximate the average delivery period we assume
that the average steady-state length of any cycle is given by



(10), with S = S computed as the solution of the fixed-
point equation (17). Assume also that the average steady-state
lengths of all hops are equal, so that (N — ¢) hops take a
fraction (N —i)/N of a cycle. We can then write

N—i_ -
N%wpisz”

w; = T(S) + @1

Messages originating at host N have the shortest average
delivery phases, while those originating at host 1 have the
longest. On the other hand, host 1 is the first host to deliver
all messages of blocks (m, r) as soon as it increases the round
number of folder m from r to r + 1 (see Rule 3 of Section
2).

Note that when host 1 delivers messages of blocks (m,r),
host IV also has a copy of all delivered messages in its waiting
room; host NV — 1 has all of them except those originating at
host N; host ¢ has all except those originating at hosts NV,
N—1, ..., i41. Therefore, even if host 1 crashes immediately
after delivering (m,r) messages, after reconfiguration there
will be at least one other host that can supply all delivered
messages to hosts that have not received them. Thus, the
protocol tolerates one host crash between successive reconfig-
urations and satisfies the well-known reliability criterion that
any message delivered by a crashed host will also be delivered
by all operative hosts.

The protocol can be generalised to tolerate f simultaneous
host crashes, for 1 < f < N. Such a generalisation would
require that any message delivered by any host must have been
seen by at least f other hosts. Without going into details, this
can be achieved by adding f — 1 extra hops to Rule 3 in
Section 2, and hence to the delivery period in equation (21).
The resulting generalised result becomes

N —i—1
HiiT

~ N . (22)

w; =T(S) + (S) ; i=1,2,...

The total average response time of a message submitted
at host ¢, W;, is the interval between its arrival into the
system and its departure from the system. That average is

approximated as

L
WZ:J—#wz ) i:1,27~-~7Nu

3 (23)

where L, and w; are given by (19) and (21). The total average
number of messages submitted at host ¢ and present in the
system at any time in the steady state, L;, is
Li=Ls+XMv; ;3 i=1,2,...,N, (24)
Both these performance measures depend on the host of
origin, 7. A simple way of avoiding that dependency is to
slightly overestimate the average delivery period at hosts other
than 1, and use w; for all messages. The resulting estimate
for the overall average response time will be denoted by W
and will be used as the performance measure in the numerical
examples.

IV. NUMERICAL AND SIMULATION RESULTS

We have experimented with different systems where all
hosts have the same parameters. The block size is fixed at
B = 10 and message sizes have three possible sizes: 1 with
probability 0.5, 2 with probability 0.3 and 3 with probability
0.2. The average number of messages that may fit in a block,
if plenty are available, is roughly d = 5.8. The average
block processing time is also fixed, at @ = 1073 secs. The
arrival rate is varied, as are the number of hosts and the
number of circulating folders. The average response time, W,
is approximated as described in the previous section, and is
also evaluated by simulation, for purposes of comparison.

In the first example, a single folder circulates among 5
replicated hosts. The approximated and simulated values of
the average response time W are plotted against A, the arrival
rate of messages per station. For this example, the inequality
(9) suggests that the queues become unstable when A > 231.
The range we have chosen, from A = 180 to A = 220, implies
an increase in the offered load from about 80% to 95%. Over
this range, the response times are dominated by the queueing
phase.

Each simulated point is the result of a run during which
two million messages arrive into the system. The simulation
assumes that the processing time of a folder containing K
non-empty blocks is distributed exponentially with mean Ka.
Messages with the given distribution are loaded into the
appropriate block until either the queue is emptied or the next
message would not fit. In the latter case, the size of the rejected
message is remembered and is used when loading at the next
folder visit. Thus the simulation keeps track of the historical
dependency.

Approximation
—+— Simulation

180 185 190 195 200 205 210 215 220
A

Fig. 3. Average response time for different arrival rates

N =5 M=1, a=0.001

The results are shown in Figure 3. The approximated and
simulated values of W are seen to be reasonably close over the
entire range of offered loads. However, it is notable that the
approximation overestimates the average response time while
the queue is less than 90% loaded, and underestimates it when
the load reaches 95%. There are two factors which may explain
this. In the case of a single folder, the simulated intervals
between visits to a given host are sums of N exponentially



distributed random variables with mean T'(S)/N each. On
the other hand, the approximation assumes an exponentially
distributed interval between visits, with mean T'(S). Thus
the approximated interval has a larger coefficient of variation
than the simulated one, and larger coefficients of variation are
known to cause larger queueing times.

The second factor is the historical dependency, whose effect
becomes significant at the 95% load. The slight decrease in
the average number of messages fitting in a block leads to
an increase in the queueing time that dominates the variance
factor.

It is perhaps worth mentioning that the approximation plot
was very quick to compute, taking a few seconds, while the
simulation one was rather slow, taking tens of minutes. If the
simulation runs were repeated or enlarged several times for the
purpose of computing confidence intervals, they would take
even longer.

In the next example, the arrival rate at each queue is kept
fixed at A = 220 and the number of folders is varied. The
other parameters are as before. Remember that, when M = 1,
all queues are heavily loaded at that arrival rate. We may guess
that, as M increases, and hence the frequency of folder visits
to any host increases, the average queue sizes and average
queuing times would decrease. The delivery phase would be
expected to increase due to the longer cycle times.

In Figure 4, the approximated and simulated average re-
sponse times are plotted against the number of folders, which
increases from M =1to M =8 .
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Fig. 4. Average response time for different numbers of folders

N =5, a=0.001, A = 220

Again, the two plots follow each other closely. We observe
a steep decrease in response time, followed by an almost flat
portion and then a gradual increase. Changing the number of
folders from 1 to 2 effectively doubles the service capacity
and reduces the average queuing time by about a factor of 6.
Further additional folders have very little effect on the queues,
but tend to increase the average cycle times and hence the
delivery component of . Eventually the response time starts
to increase, slowly.

In this example, both the approximation and the simulation
find the optimal number of processors to be M = 3, although

there is very little difference between the minimum response
times at M = 3 and its neighbours at M = 2 and M = 4.

We carried out the same experiment at a lighter, 50% load,
A = 115. The results were predictable: there is a slight drop
in response time with the increment from M =1 to M = 2,
after which the plots look like the ones in Figure 4.

Less predictable is the behaviour of the system at higher
arrival rates, requiring more than one folder in order to
ensure stability of the queues. This is illustrated in the next
experiment, where the same system is subjected to increasingly
heavy message traffic. Four values of A\ were chosen so that
the minimum numbers of folders necessary for stability, as
determined by (9), are 2, 3, 4 and 5, respectively. At those
minimum numbers, all queues are 95% loaded. In Figure 5, the
approximated average response times are again plotted against
the number of folders (the simulated plots do not provide new
insights and are omitted).
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Fig. 5. Different numbers of folders and different arrival rates

N =5, a=0.001

It is noticeable that, as the offered load increases, the
decreasing portion of the plot becomes less steep and the
minimum average response time grows. When several folders
are required for stability, the queuing reduction produced by
each additional folder diminishes, while the average cycle
length, and hence the delivery period, increases. Clearly, there
is a limit on the arrival rate that the system can cope with.
Letting M — oo in (9), we see that the right-hand side
approaches d/(Na), which would be the departure rate from
each queue if there were no gaps between folders, with all
blocks non-empty. If A exceeds that quantity, the system would
be unstable regardless of the number of folders employed.

On the basis of the experiments carried out so far, we
propose the following ‘rule of thumb’ for choosing the number
of folders in heavily loaded systems.

Optimisation Heuristic. Let //* be the minimum number
of folders required for stability, computed according to (9).
Using M* + 2 folders would minimise, or nearly minimise,
the average response time.

This heuristic works for all examples in figures 4 and 5. Of
course, in lightly loaded systems, M = 1 may be sufficient
and close to optimal.



In practice, the number of replicated servers would be quite
small, on the order of N = 2 or NV = 3. The main implication
for the behaviour of such systems is that the maximum average
cycle length is small and therefore higher arrival rates can be
supported. This is illustrated in our last example, where the
approximated value of W is plotted against M, for N = 2 and
N = 3, and two arrival rates for which the queues are 95%
loaded at the corresponding minimum number of folders,1 and
2, respectively.
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Fig. 6. N =2 and N = 3; different numbers of folders and arrival rates

a = 0.001

In Figure 6, we observe similarly shaped plots to the ones
in Figure 5. The average response times are smaller, which
is not really surprising. It is also encouraging to find that the
optimisation heuristic suggested above still works.

V. CONCLUSION

We have defined a multi-folder ring protocol which ensures
that messages are delivered to a number of replicated servers in
the same order. A queueing model of the system was analysed
and solved approximately. The results obtained are sufficiently
accurate to yield valuable insights into system behaviour. In
particular, the numerical experiments suggest a heuristic for
choosing the number of folders when the queues are heavily
loaded.

It may be of interest to consider systems where arrival
rates, and possibly message size distributions, are different at
different hosts. The fixed-point approach could be generalised
by defining the environment of an isolated queue as a vector
of occupancies, instead of a single number. That would require
a more complicated sequence of iterations whose convergence
would be less predictable.

Another open topic for future work is the historical de-
pendence which begins to affect performance at very heavy
loads. Rather than ignoring that effect, it may be possible to
approximate it. The difficulty of introducing the dependency
into the model is that the isolated queue would no longer be a
Markov process. Additional approximate assumptions would
be needed in order to take it into account. Nevertheless, the
effort would be worth it, if it leads to a more accurate sufficient
condition for stability.
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