
Throughput-Driven Database Replication Using
a Ring-Based Order Protocol

Ye Liu1 , Paul Ezhilchelvan1 , Yingming Wang1 , and Jim Webber2

1 School of Computing, Newcastle University, NE4 5TG, UK
Email: [Y.Liu197, Paul.Ezhilchelvan, Y.Wang303]@Newcastle.ac.uk

2 Neo4j UK, London, SE1 0LH, UK
Email: Jim.Webber@Neo4j.com

Abstract. We present a database replication architecture that guaran-
tees ACID transaction properties as well as high throughput expected of
modern database systems. Higher throughput results due to server repli-
cas processing distinct, non-overlapping subsets of incoming transactions
in parallel. Our novel approach addresses all challenges that emerge in
ensuring ACID properties across all incoming transactions processed in
parallel even when access pattern of transactions is not known a priori.
At the core of our approach is a high-throughput, ring-based total order
protocol which the database replicas use to reach consensus for resolving
conflicts among transactions, ensuring serializability and accomplishing
atomic commit. After presenting the architecture, protocol performance
is evaluated through implementations when replication degree is two and
three, tolerating at most one replica crash. While 2-fold replication re-
quires perfect crash detection, three-fold can do with weak detectors.

1 Introduction

Replicating a database for high availability has long been studied, implemented,
and analysed for various performance characteristics (see [12]). Replication that
also ensures ACID properties needs to address greater, additional challenges.
Atomicity (A), Consistency (C), Isolation (I), Durability (D) are the ACID
properties that ensure total integrity at the point of transaction termination,
despite host crashes and transactions seeking to access common data items in
an order incompatible with C and I properties. For example, the problem of ‘in-
compatible access’ or conflict becomes more challenging to solve when database
replicas process distinct transactions in parallel. Consequently, several perfor-
mance studies, e.g. [17], shows that ACID replications offer a much smaller
throughput even at medium loads, compared to non-ACID ones; however, the
latter permit database replica states to diverge and hence require state reconcil-
iation which can be next to impossible in some database contexts [6].

This paper addresses the challenge of improving throughput for ACID repli-
cation systems. Our approach involves fully replicating a database on multiple
servers that initially execute distinct subsets of input transactions in parallel,
but finally generate identical transaction outcomes and commit identical state
updates. At the heart of our proposal is a high-throughput ring-based total order

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


2 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

protocol supporting three essentials: event ordering required for server replica-
tion, identical inter-replica concurrency control to ensure C and I properties of
ACID, and Two-Phase Commit (2PC) [9] to guarantee A and D.

While our approach is novel when transaction access pattern is initially un-
known, it derives its theoretical underpinning from three canonical findings: (i)
total ordering of transactions (or Atomic Broadcast) and solving Consensus (to
resolve conflicting transactions) are reducible to each other under crash failures
[2] (ii) the two-phase commit (2PC) is only a simplified instance of consensus
[10], and (iii) maximum throughput is achieved when transaction ordering is
done over a logical, unidirectional ring network [11].

Consider, as a motivating example, a database replicated on n fail-independent

servers: {Ri, Rj |1 ≤ i, j ≤ n, n ≥ 2}. Say, concurrent transactions Ti
k and Ti

k′

execute in Ri and access overlapping sets of data items. This will be termed as
a local conflict. To ensure C and I, Ri needs to resolve who waits or gives up for
whom, and this can be done autonomously within Ri. Let us say transaction Tj

l

executes in Rj in parallel and wishes to access replicas of data items common

with Ti
k executing simultaneously in Ri. This is termed as a global conflict which

can be detected and be resolved only after parallel executions in Ri and Rj are
over. A total order (or simply an order) protocol takes inputs from distributed
servers and lets all servers decide identically on an order over the combined set
of inputs. It thus provides precedence on transactions for replicas to identically
decide which of the globally conflicting transactions waits or gives up.

The paper is organised as follows. After presenting related work below, Sec-
tion 2 presents our approach together with necessary background. It also presents
another popular approach to highlight the novelty of ours. Section 3 describes
the role of our order protocol in building a single server abstraction wherein all
replicas process all transactions identically (commit or abort) even though they
start off processing distinct streams of incoming transactions. Section 4 imple-
ments the ring-based protocol and measures its responsiveness. This protocol
has been presented earlier in [13] together approximations for response time es-
timation. The measured results are shown to be close to the estimates, allowing
us to dynamically adapt protocol parameters for real world situations. Finally,
concluding remarks are provided in Section 5.

1.1 Related Work

A recent book [12] compiles the vast material addressing database replication.
The paper [16] classifies replication techniques using three parameters, namely:
active vs passive replication, replica interactions per transaction vs per opera-
tion, and non-voting vs voting based decision on transaction commit or abort.
We use parallelised passive replication with each replica acting as the primary
for distinct input streams, per transaction interactions, and non-voting for com-
mit/abort decisions.

The performance study in [17] (referred to earlier) compares five ordering-
based replication techniques; lazy replication, where consensus is not applied to
resolve conflicts, offers high throughput at a high risk of state divergence for
Graph databases as argued in [5]. The order protocol used in [17] for ACID

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


Throughput-Driven Database Replication with Ring-Based Ordering 3

replication is leader-based where the leader is a performance bottleneck. Our
ring-based protocol is leader-free - an important feature that allows it to achieve
the highest possible throughput [11].

2 Our approach

2.1 Conflict and Concurrency Control

Concurrent transactions accessing common data items in a database system
can create conflicts. There are three types of access conflict: after an ongoing
transaction, say Ti, has written a data item, say, X, if another one, say Tj ,
wishes to write or read X, then a write-write or write-read conflict is said to
occur, respectively; similarly, a read-write conflict arises when Tj seeks to write
X after Ti has read X. Suppose also that Tj has already accessed another data
item Y and Ti (after having accessed X ) seeks a conflicting access on Y ; an
incompatibility with C and I guarantees would arise if both Ti and Tj were
allowed to go ahead ignoring these access conflicts completely: Ti would have
accessed X before Tj with Tj accessing Y before Ti. This would violate C and
I which require transactions access all common data items in the same order.

The literature proposes many isolation levels [14], from the most restricted to
unrestricted, to guarantee C and I. The unrestricted serializability must elim-
inate all incompatibility that can arise due to any of three types of conflicts
discussed earlier. It will be our target isolation level here.

Irrespective of the isolation level sought, there are broadly two ways to re-
solve a conflict: Wait and Abort. In the former, later transaction(s) wait until
the earlier transaction completes its execution. Assuming that Ti and Tj are ex-
ecuting in the same replica, Tj will wait to access X until Ti completes while it
would be the other way around on Y. So, the wait strategy must be accompanied
by deadlock detection and avoidance strategies, e.g., the work from [4] maintain
an access graph for ensuring the smallest possible abort ratio.

In Abort approach, one transaction (Ti or Tj) aborts itself after a limited or
no waiting. We use here No-Wait, Instantaneous Abort wherein a transaction
encountering a conflict will instantly abort itself. Thus, if both Ti and Tj are
running on the same replica, their access conflicts would be local and can lead to
both aborting as they individually encounter a conflict. Contrary to the intuition
that Instantaneous Abort may cause too many transactions to abort, our earlier
evaluations (see [7]), both model- and implementation-based, demonstrate that
the abort ratio is acceptably small and not considerably larger than that the
smallest returned by [4]. Instantaneous Abort, on the other hand, eliminates
deadlock possibilities, extracts near-zero implementation overhead in replicated
systems and also is the most throughput-friendly.

If Ti and Tj are running on different replicas, say in Ri and Rj respectively,
their conflicts would be global and not detectable during their parallel execution.
Post-execution, if the order protocol orders, say, Ti before Tj then all n replicas
will deem Tj to be aborted and accept the outcomes of Ti execution in Ri.



4 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

2.2 Architectures of Replicated Database System

We present our architecture after presenting one of the most popular replica-
tion architectures found in the literature and adopted by many practitioners
including Google. Thereby, we seek to highlight the novelty of our architecture
in incorporating parallel processing to promote throughput. The common archi-
tecture will be referred to as Replication Architecture 1, or simply as RA1, and
ours as RA2. They are depicted in Figures 1 and 2 respectively.

In both RA1 and RA2, clients submit transactions directly to only one of
the n replicas, R1, R2, . . ., Rn; in RA1, there is no parallel processing. More
specifically, all replicas first exchange with each other the transactions they di-
rectly received, and then order them all identically, prior to processing each of
them. That is, all replicas actively execute all transactions in the same order.
Thus, there are no global conflicts and conflicts encountered are resolved using
the same concurrency control (CC) mechanism based on the transactions order.

Barring race conditions, if one replica aborts a given transaction then all
would do so. Disagreements due to race conditions and effects of crashes are
dealt with during 2PC execution, with each replica acting as the 2PC leader
for transactions that it directly received. Spanner [3], Megastore [1] and Cock-
roachDB [15] are recent systems that have adopted RA1. Spanner use TrueTime
and others the (leader-based) Paxos or Raft protocols for ordering.

In RA2 (see Figure 2), replicas execute the transactions they directly re-
ceived, in parallel, and using some local concurrency control (CC) mechanism.
They then exchange, for each locally survived (i.e., not aborted) transaction, the
local transaction identifier and a list of data items accessed and the current value
of each write-accessed data, using an order protocol. Global conflicts are detected
using data access information and resolved using the order decided on locally
survived transactions. Those that survive global conflict resolution proceed to
2PC to be committed. In Figure 2, Tn

1 , T
n
3 , . . . shows a sub-stream of locally sur-

vived transactions emerging from Rn, and T 1
1 , T

2
1 , T

n
3 , . . . show globally survived

transactions emerging identically from all replicas.
RA2 is our architecture and uses our ring-based ordering protocol. As noted

earlier, any order protocol enables each replica (i) to disseminate its set of locally
survived transactions to other replicas, and (ii) to decide an identical order on
the combined input super-set. We exploit the former aspect to simplify 2PC
implementation by piggybacking relevant information.

Note, however that the traditional 2PC is a leader-based protocol and our
order protocol is leaderless. So, 2PC needs to be appropriately adapted. The next
two subsections provide the background for this adaptation which is detailed in
Section 3.1.

2.3 Ring-based Order Protocol

Our ring-based order Protocol that has been proposed and modelled for perfor-
mance in [13], is implemented here for n = 2 and 3. Figure 3 shows n database
replicas being arranged in a logical ring and a Folder continually circulating in
clockwise direction: moving from Replica R1 to R2, R2 to R3, . . ., Rn to R1, and

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


Throughput-Driven Database Replication with Ring-Based Ordering 5

Fig. 1: RA1 - Active Replication: Ordered Processing Everywhere

Fig. 2: RA2: Order-based Global Conflict Management before Commit

Fig. 3: Ring-Based Order Protocol: Unidirectional Folder Circulation



6 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

so on. The folder contains one slot of fixed size for each replica. Each replica Ri

enqueues each locally-survived and completed transaction in the Arrival Queue
(see Fig. 3) together with a list of data items accessed and the final values of data
items written. When it receives the folder, it enqueues all transactions found in
the folder in the Ordered Queue as per their sequence number, empties its own
slot in the folder, dequeues a transaction from Arrival Queue and loads it into
its slot with a sequence number that is one more than the largest found in the
folder. This loading continues until Arrival Queue is empty or there is no more
space left in its slot. When it stops, folder is sent to Ri+1 or R1 if i = n.

2.4 Two-Phase-Commit Protocol (2PC)

2PC [8] protocol involves two phases orchestrated by a lead replica, called the co-
ordinator and its execution for any given transaction results in either all replicas
committing or aborting that transaction. In the first, prepare phase the coordi-
nator sends a prepare request to all replicas, asking whether they can successfully
commit the transaction. Each replica evaluates commit feasibility by checking
for constraint violations and locks write-accessed data items. If a replica can
commit, it responds affirmatively; otherwise, negatively. If all respond affirma-
tively, the coordinator advances to commit phase by instructing the replicas to
commit the transaction; even if one replica sends a negative or no response (due
to crash), the coordinator sends ‘abort’ to all replicas which abort that transac-
tion. This original 2PC version is adapted in Section 3.1 to be executed at the
back of the circulating folder in a coordinator-free manner.

3 Ring-Based Ordering & 2PC for 1-Server Abstraction

1-Server abstraction in crash-tolerance literature refers to multiple, crash-prone
server replicas ‘coming together’ to provide a client-level abstraction of a single,
crash-free server provided that replica crashes do not exceed a specified thresh-
old. We explain here how this coming-together is realized through our ring-based
order protocol using, for simplicity, n = 2 replicas of which at most one can crash.
Recovering from a crash in a ring structure is discussed in detail in [11], so we
focus here on crash-free operation by referring to Figure 4 where data structures
and folder slots of R1 and R2 are shown in red and blue respectively.

Replica Ri, i ∈ {1, 2}, executes the transactions that it directly receives. If a
transaction Tj needs to access data item X that has already been accessed by an
ongoing, concurrent Ti, then Tj will instantly abort. Transactions that complete
their executions without being aborted will have their identifiers together with
their data access lists queued in the local Arrival Queue, AQi for short, and also
entered in Local Survived list, LS − Listi (see Fig. 5). A transaction identifier
is the one generated within a replica, concatenated with the replica’s id; it is
therefore unique within the replicated system, e.g., Ti in Ri can become as Ti

i

(see also Fig. 2). The data access list for Ti
i, denoted as DAL(Ti

i) is the list of
all data items that Ti

i accessed and the final values of write-accessed data items.
For example, if Ti

i read-accessed X and Z and left the write-accessed Y with
value Y = 10 on completion, then DAL(Ti

i) will be {X,Y = 10, Z}.

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


Throughput-Driven Database Replication with Ring-Based Ordering 7

Whenever Ri receives the circulating, two-slotted folder, it notes down the
largest sequence number in the folder and copies all entries in each slot of the
folder into its Ordered Queue, OQi for short, as per their sequence number. It
then empties its own slot in the folder and then loads as many AQi entries
into its slot, with each loaded entry assigned a sequence number continuing
sequentially from the largest noted. If, say, the latter is 110 and Ri loads nine
entries, their sequence numbers would be 111, 112, . . . , 119. Once its slot is loaded
to its capacity, the folder is sent to the next replica in the ring, Rj , j ̸= i; when
Rj receives the folder, it would note the largest sequence number as 119.

Two remarks are in order. First, when Ri is in possession of the folder, it does
not modify the contents of any slot other than its own. Secondly, contents of all
slots of the arriving folder are copied for ordering, including its own slot which
was loaded when Ri had the folder in the previous cycle; those being loaded now
would be copied and entered into OQi when the folder returns next. It is easy
to see that replicas enter all locally-survived transactions into their respective
OQ in the same (sequence number based) order.

Whenever OQi is non-empty, Ri dequeues the first item and compares the
DAL in the dequeued item with the DAL of every entry stored in the Global-
Survived List, GS − Listi, that it maintains (see Fig. 5). If a conflict is detected
with any GS − Listi entry, the dequeued item is entered in Global-Aborted List,
GA− Listi and the corresponding transaction must be aborted during 2PC;
otherwise, the dequeued item is entered in GS − Listi for commit during 2PC.

Let us consider an example: let {Ti
i, DAL(Ti

i)} be the item freshly dequeued
from OQi and let {Th

j , DAL(Th
j)} be some entry in GS − Listi which would

refer to transaction Th that locally survived in Rj and was sequenced before Ti
i

and hence is already in GS − Listi. If DAL(Th
j) indicates that Th

j wrote data
item X when it was executed at Rj and DAL(Ti

i) indicates that Ti
i read data

item X when it was executed in parallel at Ri, then it would be treated as a
global write-read conflict and the later ordered Ti

i is marked for abort.

All replicas will reach the same outcome while checking a given item de-
queued from their respective OQ provided that their respective GS-Lists also
have identical contents at the time of their checking. The latter cannot be guar-
anteed as globally-survived transactions that have gone through the next stage
2PC execution must be removed from GS-List. Due to inherent asynchrony in
distributed computing, replicas may decide differently: for example, Ri enter-
ing {Ti

i, DAL(Ti
i)} in GS − Listi and Rj entering the same {Ti

i, DAL(Ti
i)} in

GA− Listj instead. This can occur, for example, if Th
j had been removed from

GS − Listi following its commit in Ri but is yet to be removed from GS − Listj
at the time when Ri and Rj dequeued {Ti

i, DAL(Ti
i)} from their respective GS-

List. This inconsistency will be sorted out during 2PC when Rj would respond

negatively for committing Ti
i and force Ri also to abort Ti

i. Thus, all repli-
cas either commit or abort a given input transaction irrespective which replica
directly executed that transaction; i.e., 1-server abstraction is ensured.



8 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

3.1 2PC on the Back of Ring-based Ordering

To implement 2PC using the circulating folder, we require that the folder, in
addition to n slots, contains a list of Blocks, one block for each transaction
that has entered the GS-List and hence is ready to be committed through 2PC
execution. As noted in Subsection 2.4, all replicas must respond affirmatively
after prepare phase for a commit outcome and a replica’s ‘no’ acts as a ‘veto’.

The structure of a transaction’s block reflects this information collection:
transaction (global) identifier (e.g., T j

h) accompanied by an integer vector of n
indices - one for each replica (see Fig. 5 for n = 3). The vector in the block for
transaction T is denoted as VT . VT [i], 1 ≤ i ≤ n, is 0, 1 and 2 respectively implies
that Ri possibly started 2PC for T and is preparing, Ri completed prepare phase
and is ready for commit phase, and Ri committed T; VT [i] = −1 indicates that
Ri responded negatively for T in prepare phase and therefore VT [j] can never
become 2 for any replica Rj .

Each Ri also maintains four more lists (shown in Fig. 5) and their abbreviated
names follow this intuitive convention: S for Survived, L for Local, G for Global,
and P, C and A for Prepared, Committed and Aborted respectively.

For space reasons, we explain the workings of our Ring-Based 2PC for trans-
action T by referring to Fig. 6 where it is assumed that all replicas enter T in
their respective GS-List. The other case of only some replicas doing so and oth-
ers entering T in GA-List is simpler and discussed next. We also assume that a
replica optimistically starts preparing for committing T (i.e., the prepare phase)
as soon as it enters T in its GS-List and similar optimism is common in 2PC
implementations; Replica i, 1 ≤ i ≤ 3, in Fig. 6 is simply referred to as Ri.

The description based on Fig. 6 involves 11 Steps; transition to the next step
corresponds to a given replica receiving the folder circulating in the ring.

Step 1: We assume that Replica 1 (R1) is the first replica to notice that the
folder does not yet have a block for T that is in its GS − List1. So, it
adds a block for T in the Blocks part of the received folder with VT =
[0,0,0]. Suppose that preparation for T is locally completed; VT = is set
to [1,0,0] and the entry for T in GS−List1 is moved to Locally Prepared
List, LP − List1. (If not completed, VT [1] is left unchanged at 0 and
these operations are to be carried out at the earliest instance when R1

receives the folder after it has completed prepare for T .) When R1 is
done with the folder, it transmits the folder to R2.

Step 2: Suppose that R2 has also completed prepare for T when it receives the
folder. It sets VT = to [1,1,0] and moves the entry for T from GS−List2
to LP − List2. When ready, R2 will transmit the folder to R3.

Step 3: Suppose also that R3 also completed prepare phase for T when it receives
the folder (from R2). It will behave like Replica 2 stated in Step 2, except
that VT = [1,1,1] and R3 now deduces that all 3 replicas have completed
prepare for T , starts the next 2PC phase commit for T and moves the
entry for T from LP − List3 to Global-Prepared List, GP − List3.

Step 4: When R1 receives the folder with VT = [1,1,1], it deduces that all replicas
have done commit for T ; so, it moves the entry for T from GP − List1
into GP − List1, Global-Prepared List and starts commit for T .

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


Throughput-Driven Database Replication with Ring-Based Ordering 9

Fig. 4: Ordering Locally-Survived Transactions Using Circulating Folder.

Fig. 5: Lists for Transaction Lifecycle Management

Fig. 6: Ring-Based 2PC Steps in Committing Transaction T



10 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

Step 5: R2, on receiving the folder, starts commit for T , like R1 in Step 4.
Step 6: Recall that R3 started commit for T in Step 3. It is possible, and we

here assume so, that when R3 receives the folder now, it has completed
commit for T ; if so, it will move the entry for T from GP − List3 to
LC − List3 and sets VT = [1, 1, 2]. (If commit is not completed, these
actions will be done at the earliest instance when R3 receives the folder
after commit for T is locally completed.)

Step 7: Suppose that R1 also completed commit for T when it receives the folder
now. It sets VT = [2, 1, 2] and moves entry for T from GP − List1 to
LC − List1, the Local Committed List (see Fig. 5).

Step 8: Retaining the assumption that a replica completes commit for T when
the folder makes one round in the ring, R2, when it receives the folder,
sets VT = [2, 2, 2] and moves entry for T from GP − List2 to LC −
List2. Additionally, it deduces from VT = [2, 2, 2] that T is committed
everywhere and moves entry for T from LC − List2 to GC − List2.

Step 9: R3 locally carries out the additional operations done by R2 in Step 8.
Step 10: R1 locally carries out the operations done by R3 in Step 9. Note: all

replicas now have T in their GC − List.
Step 11: Garbage Collection Rules are as follows. Whenever Ri receives the folder

with VT already set to [2, 2, 2] for any T , it deletes the entry for T in
GC − Listi if it already exists in GC − Listi; otherwise, it deletes the
block for T in the Blocks part of the incoming folder. So, R2 discards
its GC − List2 entry for T here when folder arrives with VT = [2, 2, 2].

Continuing on, R3 and R1 will discard their GC − List entry for T in Step
12 and 13 respectively, and R2 will discard the Blocks entry for T in Step 14.

Executions with T ∈ GA− Listi for some or all Ri, 1 ≤ i ≤ 3. Suppose
that R1 has entered T in its GA−List1 and receives the folder in Step 1 above
with no Blocks entry for T . It will create an entry with VT = [−1, 0, 0] Any
replica Rj that receives the folder sees this veto for T will be in one of two
situations: (i) it also has T in GA − Listj in which case it sets VT [j] to −1, or
(ii) it has T in GS−Listj in which case it aborts any prepare done or being done
for T , moves the GS − Listj entry for T into GA− Listj and sets VT [j] = −1.

Another scenario of interest is that R1 has entered T in its GS − List1 and
behaves as in Step 1 above, and only replica that has entered T in its GA−List
is R2 and/or R3. Let us assume that it is only R2 with T in GA − List2. In
Step 2, R2 will execute the actions of (i) above and R3 and R1 will execute the
actions of (ii) above in Step 2 and 3 respectively. Garbage Collection Rules are as
before except that the incoming folder should have VT already set to [−1,−1,−1]
(instead of [2, 2, 2]) and GA− List is used instead of GC − List. Thus, R2, R3

and R1 will discard their GA−List entry for T in Step 5, 6 and 7 respectively;
in Step 8, R2 will discard the Blocks entry for T in the received folder.

4 Implementation and Performance Evaluation

We implemented the ring-based order protocol with n, n = 2, 3, servers forming
the ring and measured its performance in terms of Latency that is defined as

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


Throughput-Driven Database Replication with Ring-Based Ordering 11

the time elapsed between the instance a locally-survived transaction enters the
Arrival Queue (AQ) of a replica and the moment it has been entered in the
Ordered Queue of all replicas (see Fig 3), the given slot size k is 1KB in the
Folder for every replica. Latency thus includes the wait-time in AQ and the
time spent in the circulating folder.

We compared the uniform Measured Latency with the Estimated Latency
from model-based analytical approximations presented in [13]. While the former
is measured by repeating experiments on the implemented system, the latter re-
quires measuring two system parameters: the average time (α) taken by replicas
to process a received folder and the average folder transmission time (β) between
replicas on the ring; measurements found α = 10−3 secs and β = 10−5 secs.

Analysis in [13] states that the system is stable when the average arrival rate
into AQ, denoted as λ, is: λ < k

n2kα+β , where k is the number of slots in the

folder which is n. Since β is negligibly small compared to n2kα, we can conclude
that the largest stable λ is inversely proportional to n2 which will guide our
choice of λ values for experiments. Latency is estimated as follows.

For any stable λ, a unique solution for s ∈ (0, 1) exists:

s =
λ(nα+ β)

1− λn(n− 1)α
. (1)

The average queue size L at each replica is estimated as s
1−s and the estimated

Latency (by Little’s Law) is L
λ .

4.1 Two Replica System

With n = 2, the maximum stable λ is to be no larger than 249. We began
by measuring the Latency under varying arrival rates, specifically at λ = 50,
100, 150, 200, and 249. Starting from λ = 200, a notable increase in both the
measured and estimated L values is observed, indicating a sharp transition in
system behaviour. At λ = 249, the values become extremely large, reflecting
system is approaching instability or saturation.

We conducted additional experiments focusing on the critical range 239 ≤
λ ≤ 249, collecting a more granular set of data to understand the system dy-
namics in this region better. Detailed experimental results for 239 ≤ λ ≤ 249,
including the estimated latency, are summarized in Table 1.

Our experimental results reveal that the system achieves its optimal perfor-
mance when the transaction arrival rate λ lies under 247. When λ approaches
248 or 249, the system performance degrades noticeably but remains operational.
However, when λ exceeds 249, the system surpasses its capacity limits, leading
to system instability.

Finally, as illustrated in Figure 7, the measured latency values closely align
with estimated ones, indicating that the system operates in a stable and pre-
dictable regime. This consistency confirms that λ ≤ 247 represents a robust
region for maintaining high throughput with bounded latency.



12 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

239 241 243 245 247 249
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.0512 0.0580 0.0867 0.1135

0.2148

1.1021

0.0477 0.0551 0.0792 0.1069

0.1974

1.0402

Arrival Rate of Transactions λ (Transactions per Second)

E
st
im

a
te
d
L
a
te
n
cy

/
M
ea
su
re
d
L
a
te
n
cy

(s
)

Latency for Best Throughput Performance

Measured Latency

Estimated Latency

Fig. 7: Two Replicas with Increasing λ. λ ∈ [239, 249]

λ Measured L Estimated L Estimated Latency (s) Measured Latency (s)

239 11.3890 11.5451 0.0477 0.0512

241 13.2804 14.4213 0.0551 0.0580

243 19.2459 19.1017 0.0792 0.0867

245 26.2024 28.0598 0.1069 0.1135

247 48.7488 52.0955 0.1974 0.2148

249 259.0055 331.4503 1.0402 1.1021

Table 1: Two Replicas: Results for λ in the Range 239 to 249

λ Measured L Estimated L Estimated Latency (s) Measured Latency (s)

20 0.0712 0.0734 3.56× 10−3 3.73× 10−3

40 0.1774 0.1882 4.435× 10−3 4.521× 10−3

60 0.3686 0.3931 6.143× 10−3 6.495× 10−3

80 0.8119 0.8625 1.015× 10−2 1.105× 10−2

100 2.8382 3.04 2.838× 10−2 2.897× 10−2

110 32.6624 37.2022 0.2969 0.3175

Table 2: Three Replicas: Results for λ in the Range 20 to 110

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734


Throughput-Driven Database Replication with Ring-Based Ordering 13

4.2 Three Replicas: n = 3

Following the same analytical framework, when the number of replicas increases
to n = 3, the system’s stability threshold for the maximum permissible value of
λ decreases notably. The results indicate that λ must be constrained to be no
larger than 110 to maintain stable operations under this configuration. Similar
to the case with two replicas, the parameter k continues to have a negligible
impact on system stability, reinforcing the robustness of the protocol design
against variations in transaction size or queue depth at this scale.

Table 2 shows the experimental results for a system with three replicas
(n = 3), evaluated under varying transaction arrival rates λ ranging from 20 to
110. The Table presents the measured and estimated values of L, representing
the average number of transactions in the system, as well as the corresponding
measured latency and measured delay values.

The data shows that the system load increases correspondingly as λ increases.
The measured and estimated L values are closely aligned across all tested λ
values, indicating that the analytical model accurately estimates the average
system load under varying traffic intensities.

In terms of latency performance, the estimated latency and measured latency
also exhibit a strong correlation. Both metrics increase as λ grows, which is
consistent with queuing theory expectations. For lower λ values (e.g., λ = 20),
the system maintains very low latency, with delays in the millisecond range. As
the transaction arrival rate increases towards λ = 110, both latency and delay
reach sub-second values, highlighting the impact of increased load on system
responsiveness.

As λ increases, the system load and message delay also increase predictably,
following expected queuing behaviour. The close alignment between theoreti-
cal predictions and empirical results validates the accuracy and robustness of
the proposed analytical model. Even under higher traffic conditions, the system
maintained consistent and stable behavior, suggesting that the message ordering
protocol scales effectively in distributed environments with multiple replicas.

5 Conclusion

The Ring Based Ordering and 2PC Protocols provide an effective solution for
database replication while ensuring the most desirable ACID properties which
eliminate state divergence and the need for complex reconciliation mechanisms.
Moreover, by allowing parallel processing at replicas, a higher throughput is
maintained. Thus, our ring based replication architecture represents a significant
step towards high-performance, fault-tolerant database replication, providing a
novel, robust foundation for modern distributed systems.

Our experiments on the implemented system show that actual performance
is remarkably close to our analytical estimations. An advantage of this closeness
is that we can use our model-based estimations to adapt the system for pre-
vailing arrival rates, e.g., by increasing the number of slots per replica. We are
currently designing order protocols with multiple circulating folders. Our initial
assessments show that even higher throughputs are possible but at the cost of



14 Ye Liu , Paul Ezhilchelvan , Yingming Wang , and Jim Webber

increased latency. Thus, the single-folder protocol presented here represents one
end of a range of ring-based options that can be exercised.

References

1. Jason Baker et al. Megastore: Providing scalable, highly available storage for
interactive services. In Proceedings of the Conference on Innovative Data system
Research (CIDR), pages 223–234, 2011.

2. Tushar Deepak Chandra et al. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

3. James C. Corbett et al. Spanner: Google’s globally distributed database. ACM
Trans. Comput. Syst., 31(3), August 2013.

4. Dominik Durner and Thomas Neumann. No false negatives: Accepting all useful
schedules in a fast serializable many-core system. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 734–745. IEEE, 2019.

5. Paul Ezhilchelvan, Isi Mitrani, and Jim Webber. On the degradation of distributed
graph databases with eventual consistency. In Computer Performance Engineering,
pages 1–13. Springer, 2018.

6. Paul Ezhilchelvan, Isi Mitrani, and Jim Webber. Modeling the gradual degradation
of eventually-consistent distributed graph databases. Queueing Models and Service
Management, 3(2):235–253, 2020.

7. Paul Ezhilchelvan, Isi Mitrani, Jim Webber, and Yingming Wang. Evaluating the
performance impact of no-wait approach to resolving write conflicts in databases.
In European Workshop on Performance Engineering, pages 171–185. Springer,
2023.

8. James N Gray. Notes on data base operating systems. Operating systems: An
advanced course, pages 393–481, 2005.

9. Jim Gray. Notes on data base operating systems. In Operating Systems, An
Advanced Course, page 393–481, Berlin, Heidelberg, 1978. Springer-Verlag.

10. Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Transac-
tions on Database Systems (TODS), 31(1):133–160, 2006.

11. Rachid Guerraoui et al. Throughput optimal total order broadcast for cluster en-
vironments. ACM Transactions on Computer Systems (TOCS), 28(2):1–32, 2010.

12. B. Kemme, R. Jiménez-Peris, and M. Patiño-Mart́ınez. Database Replication. Syn-
thesis lectures on data management. Morgan & Claypool Publishers, 2010.

13. Ye Liu, Paul Ezhilchelvan, and Isi Mitrani. Design and analysis of distributed
message ordering over a unidirectional logical ring. In European Workshop on
Performance Engineering, pages 1–13. Springer, 2024.

14. Jim Melton. Ansi/iso sql-92 specification. Online, 1994.
15. Rebecca Taft et al. Cockroachdb: The resilient geo-distributed sql database. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 1493–1509, New York, NY, USA, 2020. Association
for Computing Machinery.

16. M. Wiesmann et al. Database replication techniques: a three parameter classifica-
tion. pages 206–215, 2000.

17. M. Wiesmann and A. Schiper. Comparison of database replication techniques based
on total order broadcast. IEEE Transactions on Knowledge and Data Engineering,
17(4):551–566, 2005.

https://orcid.org/0009-0002-6601-4141
https://orcid.org/0000-0002-6190-5685
https://orcid.org/0009-0001-4500-2734

	Throughput-Driven Database Replication Using a Ring-Based Order Protocol

